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We consider the flow of a gas in a channel whose walls are kept at fixed (dif- 
ferent) temperatures. There is a constant external force parallel to the boundaries 
which may themselves also be moving. The system is described by the stationary 
Boltzmann equation to which are added Maxwellian boundary conditions with 
unit accommodation coefficient. We prove that when the temperature gap, the 
relative velocity of the planes, and the force are all sufficiently small, there is a 
solution which converges, in the hydrodynamic limit, to a local Maxwellian with 
parameters given by the stationary solution of the corresponding compressible 
Navier-Stokes equations with no-slip voundary conditions. Corrections to this 
Maxwellian are obtained in powers of the Knudsen number with a controlled 
remainder. 

KEY W O R D S :  Hydrodynamic limit; stationary Navier-Stokes equations; 
kinetic theory. 

1. INTRODUCTION 

T h e  b e h a v i o r  of  m a c r o s c o p i c  systems in s teady n o n e q u i l i b r i u m  s i tua t ions  

is a subject  of  great  intr insic  and prac t ica l  in teres t  and  one  which was close 
to O n s a g e r ' s  heart .  (~) The  s imples t  cases are  those  which have  some  sym- 

metries.  These  inc lude  the un id i rec t iona l  f low be tween  paral le l  plates o r  

coaxia l  cyl inders  in which the s teady n o n e q u i l i b r i u m  flow is m a i n t a i n e d  by 

an externa l  b o d y  force o r  pressure  gradient ,  a n d / o r  by t rans la t ing  the walls 

at s o m e  prescr ibed  speed,  as in the classical  Poiseui l le  and  C o u e t t e  flows. 

T h e  h y d r o d y n a m i c  desc r ip t ion  of  such systems has  been m u c h  s tudied  and  
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the stability properties of the flow for small values of the control param- 
eters are known. The appearance of instabilities, for some critical values of 
the parameters, is also proven, at least for the linearized equations, t2~ 

Much less is known about these problems from the microscopic point 
of view. Onsager was able to use properties of the microscopic dynamics to 
derive exact results about the symmetry properties of the transport coef- 
ficients appearing in the linear hydrodynamic equations. To do this he had 
to make a very plausible assumption about the equivalence of transport of 
matter, heat, etc., resulting from the regression of spontaneous fluctuations 
in an equilibrium system and that induced by macroscopic gradients or 
forces which obey linear laws. The validity of these linear laws, such as 
Fourier's law of heat conduction, and of the hydrodynamic description 
itself was then as now based on experiments rather than derived from the 
more fundamental laws governing the motion of atoms or molecules. To 
actually derive the hydrodynamic equations in a mathematical rigorous 
way from the underlying microscopic dynamics is a formidable task which 
is now in an active but still early stage of development, t3'4) 

The study of these problems at the kinetic level of the Boltzmann 
equation is an intermdiate step in this program. It is useful from the con- 
ceptual point of view because, while may of the features of the microscopic 
description survive, the mathematical analysis is simpler than the fully 
microscopic one. In addition, it is also of practical interest in situations in 
which the fluid is sufficiently rarefied for the Boltzmann equation to give an 
accurate description of the microscopic state. The hydrodynamic behavior 
away from boundary layers or shocks is recovered by expanding in the 
Knudsen number, the ratio of the man free path to the scale of macro- 
scopic gradients. Such expansions have been extensively investigated, and 
we refer to ref. 5 and references quoted therein. The validity of such an 
expansion, relative to the Euler behavior, in the time-dependent ease 
without boundaries was proven in refs. 6-8. One of the difficulties in 
dealing with stationary problems is due to the fact that the boundary is 
essential and in a thin layer (of the size of the mean free path) near the 
boundary the space variations are not as slow as the hydrodynamic ones. 
Therefore one has to deal with a boundary layer expansion, too. In ref. 9 
the two intertwined expansions are discussed in the case of the thermal 
layer. 

In a recent paper, tj~ we consider the case of a gas between two walls 
subject to a force parallel to the walls. The walls were held at equal tem- 
peratures and there were no-slip boundary conditions. We proved there, for 
a sufficiently small force, the validity of a truncated expansion in the 
Knudsen number, whose lowest order is the local Maxwellian with param- 
eters satisfying the hydrodynamic equations (the stationary compressible 
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Navier-Stokes equations). The next orders involve boundary layer correc- 
tions as well as kinetic corrections in the bulk; the first-order kinetic 
corrections are actually responsible for the dissipative effects and determine 
the form of the hydrodynamic equations. The proof in ref. 10 used explicitly 
the symmetry between the two walls, which prevents its direct application 
to more general situations. In this paper we extend the above results to the 
case in which the two planes are at different temperatures and can move 
with respect to each other, provided that the differences in temperature 
and the relative velocity, as well as the force, are small enough. In this 
more general situation we need to modify the proof to take into account 
boundary terms which were absent in ref. 10 because of symmetry. This will 
be discussed in Section 3 where we sketch the proof, pointing out the 
necessary modifications, while we refer to re[ 10 for details. A complete 
formulation of the problem and a precise statement of the results is given 
in Section 2. 

We note here that the case of the fluid between two coaxial, nonrotating 
cylinders, at different temperatures and subject to an external force parallel 
to the axis, can be reduced to a form very similar to the one discussed in 
this paper, so that our results apply also to this case. Not  covered in this 
paper is the case of a channel with a force orthogonal to the walls or that 
of rotating cyclinders, which will be presented in a forthcoming paper. "1~ 
We note, alas, that the restriction of our result to the small values of the 
external driving parameters prevents its application to the most interesting 
situations in which instabilities arise. Finally we mention that, as for the 
hydrodynamic equations, explicit steady solutions 1'2-~41 are available in 
some spcial cases for the BGK model and for the Boltzmann equation 
for Maxwell molecules. While such solutions are found for all Knudsen 
numbers and also for large values of the external parameters, they are only 
valid in the bulk. Since they do not match the boundary conditions, their 
range of applicability is effectively reduced to the case of small Knudsen 
numbers. The stability of such solutions is still an unexplored field. 

2. F O R M U L A T I O N  A N D  RESULTS 

We consider the stationary Boltzmann equation for the distribution 
function f ( r ' ,  v) on the space scale of the man free path in the presence of 
an external force G: 

v - V [ f +  G . V v f  = Q ( f , f )  (2.1) 

The velocity of the particles, v = (v,., v.,,, v_.), is in ~3, while the position r'  
is in a three-dimensional slab f2~, = {(x', y', z') ~ R 3 s.t. ly'l < e - i  }; e -  1, the 



392 Esposito e t  al. 

size of the box in microscopic units, over which there are significant varia- 
tions in temperature, velocity, etc., will be the scaling parameter. V' denotes 
the gradient with respect to (x', y', z'). Q(f, g) is the usual Boltzmann colli- 
sion operator for a hard-sphere gas: we refer to ref. 10 for all details. Since 
we are interested in the solutions of (2.1) in the limit e-~ 0, it is convenient 
to rewrite it in rescaled (macroscopic) space coordinates (x ,y ,z)= 
e(x', y', z'). In the new variables (2.1) becomes 

v. Vf  + I_ G. V v f  = _1 Q(f, f )  (2.2) 

and the space domain becomes ~ =  {(x,y, z ) e ~  3 s.t. lYl < 1 }. The walls 
(i.e., the planes y =  +1) are assumed to be at fixed temperatures T s ,  
say T+ > /T_ ,  and to move parallel to the xz plane at speeds U s .  We 
model collisions with the walls via Maxwell boundary conditions with unit 
accommodation coefficient, i.e., we assume that the distribution of 
"incoming" velocities after a collision with the walls is given by 

f ( - 1 ,  v)=ot_l~l_(v), v y > 0  (2.3) 

f(1, c)=~+)gI+(v), v.,, < 0 (2.4) 

with f (  + 1, v) =f(x ,  +_ 1, z, v) and 

1 
M s  (v) = ~ e-  to- u• l~p-T~ (2.5) 

normalized so that 

I, Iv.,,l ~l • (v) d v :  l 
,rXO 

The a s depend on the distribution of "outgoing" velocities in such a 
way that the net current to the walls vanishes, 

( vy f } - - fR  v.f(+_l,v)dv=O for 

Condition (2.6) and the normalization of A) s imply 

y =  +1 (2.6) 

+ ~ vvf( + l, v) dv (2.7) 
at 5.<>o 

Namely, ~_+ represent the outgoing (from the fluid to the walls) fluxes of 
mass in the direction y. More general boundary conditions could be 
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allowed (see, for example, ref. 5), but we restrict ourselves to this case for 
the sake of concreteness. 

In the following, as in ref. 10, we assume that the force field is in the 
x direction and has a strength of order e-', i.e., G =  (e2F, 0, 0). We also 
assume that F is constant in space. The scaling factor e 2 for the force is 
required, as discussed in ref. 10, to get stationary solutions. Larger forces 
cannot in general be equilibrated by the boundary dissipative mechanisms 
of the Boltzmann fluid. We look for solutions of (2.2) depending only on 
the y space coodinate. The Boltzmann equation then becomes 

O f .  , . O f  1 
v,, =- + e r - -  = - Q( f ,  f )  (2.8) 

�9 Oy av x e 

with f>~O and 

1 

I ,43, ( f >  = m  (2.9) 
- 1  

for some positive constant m. We use the notation ( g ) = S n a g ( v ) d o .  Note 
that the space variables x and z can be restricted to a square with periodic 
boundary conditions, without any change in the equations. 

All the results of this paper extend immediately to a case of a fluid 
between two coaxial cylinders of macroscopic radii al < a2. In this case we 
use cylindrical coordinates (r, r x) and substitute v,(Of/Or) for v.,,(Of/Oy) in 
(2.8). The boundary conditions are now given for r = a l  and r = a 2 ,  for 
Vr>0 and Vr<0, respectively. Setting a l = 0 ,  the condition for r = a l  is 
replaced by the condition that the solution on the axis be even in G, a 
situation which resembles more the case discussed in refo 10. 

2.1. The Hydrodynamic Regime 

When e is small the solution of the Boltzmann equation is expected to 
describe behavior close to the hydrodynamic one, in the sense that, to the 
lowest order, f is given by a local Maxwellian, with parameters determined 
by the solution of a set of hydrodynamic equations. At higher order in e 
there are both bulk and boundary layer corrections. The proof of this 
assertion for the boundary value problem (2.3)-(2.8) is the main result of 
this paper. 

In ref. 10 we considered the situation T+ = T_ ,  U• = 0. This has the 
symmetry (y, Vy)~ ( - y ,  -vy) ,  which was used heavily in the proofs. In 
this paper we extend the proof in ref. 10 to the case where there is no such 
symmetry. We prove that when the force, the difference of temperature, and 

822/78/I-2-27 
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the relative velocity of the planes are sufficiently small, then it is possible, 
for small e, to construct a solution to (28) of the form 

6 

f = M +  ~ enf,,+e3fR (2.10) 
n = l  

Here M=Mp, u,r is the local Maxwellian with parameters T=T(y) ,  
p=p(y),  and U=(u(y),O, w(y)) given by the solution of the stationary 
hydrodynamic equations 

d 
d)--~, (pT)=0 (2.11) 

d ( du'~+pF=O (2.12) d)-~ rl(T) dy) 

-~y rl(T) = 0  (2.13) 

~(T) +rl(T)L\dy) kdy/ J 

These equations are to be solved with no-slip boundary conditions 
U(+_I)= Ue on the thermal walls at temperatures T+ > 0  and we fix 
Sl_l p(y) dy=m. The thermal conductivity x(T) and the viscosity coef- 
ficient q(T) are strictly functions of the temperature, given by well-known 
expressions for which we refer to ref. 5. 

We note that the transport coefficients are described by the term f i  
in (2.10), which contains the main contribution to the heat flow and 
momentum dissipation. Therefore they are of order e at the microscopic 
level of the distribution function f,  but they are of finite size on the Navier- 
Stokes time scale. They are responsible for the conversion of mechanical 
work into heat and of the transport of heat to the boundary. See Section 4 
for some comments about this point. 

The corrections f,, in (2.10) are the sum of three terms, f , ,=  
B,, + b, + + b,7, with B,, describing f in the bulk, while b~ give boundary 
layer corrections, sensibly different from 0 only near the boundary. The 
bulk terms B,, satisfy the following set of equations, which correspond to 
a sort of Hilbert expansion: for n = 1 ..... 6 

OB, _ l OB,, _ 2 o,,-Tf--y +r ~ - _ ~ . +  Y' Q(Bk, B,,,) (2.15) 
k, m >1 1 

k + m = n  
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where ,L#f is the linearized Boltzmann operator defined as 

s  - 2Q(M, f )  (2.16) 

and we put Bo = M and B_ ~ = 0. 
The boundary layer terms are obtained by scaling back to microscopic 

coordinates around y =  _1. Setting y ' = e - ~ ( y +  1) and y " = e - ~ ( 1 - y ) ,  
with both y'  and y" varying in [0, 2e - l ] ,  we have that the boundary layer 
corrections near the wall y = -1 ,  b,7, have to satisfy, for n = 1 ..... 6, 

v.,, + b ,7 + F o~x b ,7_ z = Z#- b ~ + 2 Q ( V M - , b ,7_ l ) 

+ Z 
i,j>~l 

i + j ~ n  

[2Q(B,,  b f  ) + Q(b 7,  bf- ) + Q(b +, b 7 )] 

(2.17) 

where we put b~ = b  +, =0.  Moreover, M+ =Mot+ll.,t_+l).rt+l I, s  
2 Q ( M + , f ) ,  and V M + = e - t ( M - M + ) .  The functions b, + satisfy an 
analogous set of equations near the boundary y = 1. 

Equations (2.15) and (2.17) are linear, but coupled together in a com- 
plicated way by the boundary conditions which they have to satisfy We will 
specify the boundary conditions later, but note here that the boundary 
layer corrections decay exponentially in the variables y '  and y", in conse- 
quence of Proposition 2.1 below. So their effect in the bulk is negligible, 
and this justifies the interpretation of the b,~ as boundary layer terms. 

A slightly differnt version of the above expansion was introduced in 
ref. 9 for the thermal layer problem. The one used here was introduced in 
ref. 10. Their solvability is related to the existence of regular solutions of 
the hydrodynamic equations and to the "dissipative" properties of the 
linearized Boltzmann operator. In particular, the boundary layer expansion 
(2.17) can be solved in terms of the solution of the linear Milne problem, 
discussed, for example, in ref. 15. 

2.2. The Remainder  

To complete the description of f we have to discuss the remainder JR, 
which contains the nonlinearities of the problem, although in a weaker 
form, because it is multiplied by a positive power of e. The remainder fR 
satisfies the equation 

Of,,. , Of R 1 
Vy - -  + e~ _---- = - .LPfR + s + e3Q(fR, JR) + e3A 

Oy Or.,. e 
(2.18) 
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with 

~ l f g = 2 Q  ( L  e"-lf,,,fR) (2.19) 
t l =  l 

and A given by 

['- OB6. _0f6 _afs-] 
.4 = - i v , , - -~ -v  + ~e-~v  ~ + e-g~v l + [2Q(AM +, b~ ) + 2Q(AM_, b~- )] 

L Y x .~J 

+ ~ ek+'-TQ(fk,f.,) (2.20) 
6>~k,m>~l 
k+m>~7 

2.3. Boundary Condit ions 

It is quite easy to satisfy (2.3) and (2.4) to zeroth order in ~, because 
M is already a Maxwellian and the temperature and velocity fields were 
chosen to fit with the Maxwellians /17/_+. Only the density has to be 
adjusted. Higher-order terms are more involved. In fact the B,, satisfy 
(2.15), which do not involve boundary conditions. So they do not reduce 

h- - -  to a,?M• on the boundary and one is forced to introduce boundary layer 
corrections. The idea is that one introduces at one of the boundaries, say 
y =  1, the correction b~- so that B~ +b~- is proportional to .~r+ for v,,<0. 
The same has to be done at y =  -1 .  This changes again f l  at y =  1 by 
non-Maxwellian terms. However, since b?  decays exponentially fast, the 
modification is exponentially small in e-1. Therefore we impose on the f ,  
the following boundary conditions: 

f , ( -  1, v)=at:M_(v)+7,~,(v), vy>0  
(2.21) 

f,,(I, v) = ~ :~ '+ (v )  + ~L(v ), 5 ,<0  

with 7,+~(v)=b,T(2e -1, v) exponentially small in e -1 (see Proposition 2.1 
below) and we fix 

I, v,.f,( +__ 1, v) dv 
~ '~=  + ,~o 

(2.22) 

Finally, to fulfill (2.3) and (2.4) we impose the following conditions on JR" 

6 

fR(--1, V)=~h~t  (V)-- ~. ,,-3 - _ e ~', .... V.,, > 0 (2.23) 
/ 1 =  1 

6 
~ n -  3 + fR(1, v) --c% + A~t+ ( v ) -  ~ ~, ..... v,,<0. (2.24) 

s l =  1 
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The normalization condition (2.9) requires 

f~ dy (f,,) =0,  n = 1 ..... 6 
- - 1  

1 

f dy (JR)=0 
- - 1  

397 

(2.25) 

(2.26) 

2.4. Resul ts  

The construction of the solution to the linear problems (2.15) and 
(2.17) with the boundary conditions (2.21) and the normalization condi- 
tions (2.25) is not straightforward, but the differences from the case 
discussed in ref. 10 are minor and we refer to that paper for the proofs; 
see also ref. 9, where a similar problem was considered for the case of 
the thermal layer. Here we summarize the properties of the f ,  which are 
important in Proposition 2.1. To state them we define for any nonnegative 
integer r the norm 

I f  I t= sup sup (1 + IVl) r If(Y, V)[ 
. I ,E [ - -  1 , 1 ]  V E R  3 

(2.27) 

and we put 

q=max{IFI ,  I U + -  U_I, I Z + - Z _ l }  (2.28) 

Proposition 2.1. Let q be sufficiently small. Then there are unique 
smooth functions p, T, u, and w satisfying (2.11)-(2.14), with derivatives of 
any order bounded by O(q). Moreover, it is possible to determine uniquely 
the functions B,, and b,, ~, n =  1 ..... 6, satisfying (2.15) and (2.17) so that 
f,, = B,, + b + + b~- satisfies (2.25) and the condition 

(v,f,)=O for y e [ - 1 ,  1] (2.29) 

and satisfies (2.21). Furthermore, for any positive r there is a constant c 
such that 

IM-l/2B,[,<cq (2.30) 

a'c-l/2h• [e-x(1 T-y)] e x p [ - t r ~ - l ( 1  -T-y)][r<cq (2.31) I ~ '~  ,at  v l !  

for some constant a > 0. Finally, the A in (2.18) satisfies 

( A ) = 0  for y E [ - 1 ,  1] (2.32) 
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and 

IA e x p ( -  �89 r < cq (2.33) 

with p = s u p y , r _ l . l l  T(y).  

To complete our picture of the distribution function, it is necessary to 
get solutions of the error equation (2.18) with the boundary conditions 
(2.23) and (2.24) and the normalization condition (2.26). By (2.29) and 
(2.6) we have the extra condition 

(v.,,fR) = 0 for y ~ [ - 1 ,  1] (2.34) 

Our main result is the following theorem, where we use the norm 

[flr.o = sup s u p ( l + l v l ) r e x p ( O v 2 ) l f ( y , v ) [  (2.35) 
),E [ - - 1 , 1 ]  v ~  3 

T h e o r e m  2.2. There are positive constants to, 0o, and qo such that, 
if ~ < % and q < qo, there is a solution to the boundary value problem 
(2.18), (2.23), (2.24), (2.26), and (2.34) having the property that for any 
positive integer r there is a constant c > 0 such that 

I f  Rl,.o ~ ce 3/z [A[r,O (2.36) 

for any 0 < 0o. Moreover, the solution is unique in the class cg~ of functions 
f on [ - 1 ,  1 ] x R  3 such that ~ If[r.O is bounded uniformly for small t, 
positive 0 < 0o, ~ < 1/2, and r ~ Z. 

The proof of this theorem will be sketched in next section. Here we 
make a few remarks about uniqueness: Theorem 2.2 implies that there is a 
unique solution to the Boltzmann equation in terms of a truncated 
expansion in e, i.e., a solution with hydrodynamic behavior. But this 
is not enough to prove uniqueness of the solution to the boundary 
value problem (2.3)-(2.8). In fact, our result simply means that we have 
uniqueness in the class ~'~ of the functions f on [ -  1, 1] x R 3 such that 
~c-3 + ~1 I f - e f l -  ~2f2[ r.O is bounded uniformly for small 5, positive 0 < 0 o, 

< 1/2, and r s Z. We do not expect to be able to get uniqueness is a wider 
class with the present methnds. 

We also note that the uniqueness in cg~ does not exclude the possibility 
of solutions of the Boltzmann equation (2.1) which depend also on the 
space coordinates x and z. The estimates we have at the moment are not 
sufficient for that. We expect, however, to be able to prove uniqueness in 
a class similar to (g~, with full three-dimensional space dependence allowed. 
This work is in progress. 
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3. OUTLINE OF THE PROOF 

We first discuss how to satisfy the conditions on JR. We can use the 
constants  ~ -  and ct~- to satisfy conditions (2.26) and (2.34) on the remain- 
der JR. Namely,  we integrate (2.18) with respect to v, then, by (2.32) and 
the fact that  <Q(f ,  g) ) = 0 for any f and g, it follows that  (2.34) is satisfied 
for any y e [ -  1, 1 ], once it is satisfied at one point, say y = 1. We can then 
use ct~ to fulfill (2.34) at y = 1 and ~ to satisfy (2.26). To  be more  explicit, 
we write fR as 

with 

fR= I(R)M + R (3.1) 

1 

so that  (2.26) is satisfied. Recalling that  

p+ (T+/2rc)il2)ff'I+-(v) = M( -I- 1, v) (3.3) 

we choose ~ -  = ( T  /2n)-l/2p-5_~i(R), so that  the function R has to solve 
the following boundary  value problem: 

OR OR 1 
Vy-~-f +er-~vx=-~.~'R+.X'R+e30.(R, R)+e3i  (3.4) 

R( - 1, v) = ~ - ,  vy > 0 (3.5) 

R(1, v) =/3R_M+(v) + ( +, v.,, < 0 (3.6) 

<v,,R>=O for y e [ - 1 , 1 ]  (3.7) 

where the linear opera tor  ~ArR is given by 

JV'R = 5~'R + I(R) ( ~ e"- '.~q'f~ + s -~F-~v~x (3.8) 
t # = 2  

The nonlinear term is given by 

O_(R, R) = Q(R, R) + 2/(R) ~ R  (3.9) 

n - - 3  + and we have put ~-+ = -Z,6,= 1 e )',7., and f iR-or  R -  + +ct~ .  
To  get Eq. i3.4) we have used the fact that  Q(M, M )  = 0 and the rela- 

tion (2.15) with n = 1. In this way there is no normalizat ion condition on 
the function R. The quanti ty ct R represents both  the outgoing flux o f f R  in 
y =  - 1  and the integral of R over y and v. This is possible because the 
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impermeability condition for fR at y = - 1  is automatically satisfied at 
y = 1. Since M has vanishing mass flux in the direction y, the constant fir 
is determined so that R satisfies condition (3.7) at the point y = 1, i.e., 

flR= fv.>o VYR(1, V) W fvy<o Oy( + (3.10) 

In consequence of this R satisfies (3.7) for all y ~  [ - 1 ,  1]. 
To construct the solution of (3.4)-(3.7), we first consider the following 

linear boundary value problem: given D on [ - 1 ,  1 ] x R  3 and (-+ on 
{ v E ~  3 s.t.v.,,X0}, find R such that 

OR OR 1 ~.~q,R+ JV.R+eZ D (3.11) 

with the conditions (3.5)-(3.7) or equivalently, (3.10). Once we get 
estimates on the solution of this linear problem, it will be easy to solve the 
nonlinear problem by simple Banach fixed-point arguments. 

The linear problem presents some extra difficulties with resect to the 
one considered in ref. 10. One of them is the presence of the fir term in the 
boundary conditions. The other is related to the fact that with different 
temperatures it is no longer true that the infimum of the temperatures is 
reached on the boundary. This is important because the terms b,~ decay in 
velocities according to lt4m [see Eq. (2.31)]. Now there are y ~  [ - 1 ,  1] 
such that M+(v)/M(y, o) is unbounded. To control this unboundedness in 
velocities we need as in ref. 10 to divide the solution into high- and low- 
velocity parts and the decomposition has to be done more carefully to 
avoid introducing new, undesired divergent terms. We make this decom- 
position using mostly the same notation as in ref. 10, to which we refer for 
more details. 

3.1. The Linear Problem 

Le t  T ,  > p = sup  v~ ~_ t, t~ T(y) a n d  

M ,  = ( 2 ~ T , ) -  3/2 exp( - v2/2T,) (3.12) 

Then we have M, >1 cM for all (y, o) and some positive c. We look for a 
solution of Eq. (3.11) in the form 

R = x//-M g + x / /~ ,  h (3.13) 
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where the low-velocity part g and the high-velocity part h are defined as the 
solutions of the following system of coupled equations, whose structure 
justifies the names: 

Og Og 
Vy-~y+eF-~vx+ ( # + e F # ' ) g = e - ' L g + e - ' X ~ a - l K ,  h+ N 'g+ A~ (3.14) 

g(1, v)=flg)ffI+(v)M-J/z(1, v), v.,, < 0 (3.15) 

g( - 1, v) = O, v,, > 0 (3.16) 

Oh Oh 
v.v -~y + eF-~v x + eF#, h + (# + eF#') ~(~, + g2) 

= e - ' ( - v +  ~ K , ) h +  N , [a (~+g2)+h]  +e[N~,2),~+ dA~,] +eZd (3.17) 

h(1, v)=M,-l /2[~+(v)+flh~I+(v)] ,  Vy<0 (3.18) 

h(--1, v ) = M ,  U2~-(v), Vy>0 (3.19) 

We summarize the notation used in the above equations: Let q& = Ml/2~i, 
i = 0  ..... 4, with ~ the collision invariants 1, vx, vy, v~, v2/2, suitably 
normalized to make ~O~, i = 0  ..... 4, an orthonormal set in L2(dv ). We 
decompose any function g into a hydrodynamic part g + g 2  and a non- 
hydrodynamic part g such that 

g = g + g E + g ,  with gz=p2(y)~2,  ~,= ~ p j (y)~j  (3.20) 
j#2  

The function Zr(v) is the characteristic function of the set {vER 3 s.t. 
I vl ~< 7} and ~. = 1 -  Zr the complementary one. 

The operators L and L ,  are defined by 

Lf  = M -  UZ2Q(M, M'/2f) = ( -- v + K) f (3.21) 

L , f  = M ,  -'/22Q(M, M~,/zf) = ( - v + K,)  f (3.22) 

and the decompositions in terms of v, K, and K,  are the usual Grad 
decomposition into an unbounded multiplication part - v  and compact 
parts. We refer to refs. 16, 7, and 10 for their properties. We choose 

fig = f~,.>o do vyMU2g(1, v) 

fla=fo dvvyMt./2h(1, v)+; .  dvv,,( + 
y>O y<O 
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to make the y component of the mass flow of g and h through the boundary 
y = 1 vanish. This is no longer true at y r 1 for g and h separately, but only 
for their combination (3.13). This is very convenient for dealing with such 
terms. 

The rest of the notation is 
1 

10 ,1ogM,  p' = ~ O,,, log M, /.t = Vy ~ 
, 1 

/~. = ~ Ovx log M . ,  

a= M.'P-D, "~,~, =b,~ Mi'/~ 

N . f  = M .  m./ff(M~./2f) 

o - \ M . J  

(3.23) 

(3.24) 

(3.25) 

(3.26) 

N t ~ = 2 M - ' / Z { Q [ B ~ , M m ~ ] + Q [ b ; - , ( M t / 2 , ~ + I ( M m ~ ) M ) ] }  (3.27) 

A~ = M -  '/"2Q ['6 ~ M '/z, ( m'/Z~ + I( m'/Z.~ ) m ) ] (3.28) 

AA~ = - M ,  '/Z2Q[b~- A ' M  +, (Mt/2~ + I (MI/2~)M)]  (3.29) 

and A ' M  + = e -I(M1/" - MI+/2). 
The main difference with respect to the similar decomposition used in 

ref. 10 is related to the term ,W(Mm,~),  and is due to the problem men- 
tioned above of the speed of decay of b, + for large velocities. We recall that 
in ref. 10 we obtained an estimate for ~ which was e-~ bigger than the 
estimate for the other terms and this forced us to put this term in the equa- 
tion for g instead of moving it to the equation for h. Actually, the bad term 
is the one related to f , ,  which has no extra factors e. Hence, here we put 
the terms depending on f,,, n >/2, in the equation for h. To deal with the 
equation for g one has to consider the Maxwellian M with the true tem- 
perature, and we have a term b ; - M  m which may diverge for large 
velocities. Therefore, we retain in the equation for g only the term A~, 
which involves the bounded term b~;  the rest, eAA~, is put in the equation 
for h. This works because AA~ is uniformly bounded in e by the exponen- 
tial decay of b + and the regularity of the solution of the hydrodynamic 
equations. 

We start with Eqs. (3.14)-(3.16), considering h as a given function, 
and try to get estimates on g in terms of h. The norm we use is 

[If I[ = dy dv (1 + Iv[ ) f Z ( y ,  v) (3.30) 
[ - - l , l ] x R  3 
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This problem is not the usual boundary value problem, with prescribed 
incoming flux on the boundary, because fig depends on the solution itself. 
It can be reduced to the usual one, but this requires some care. Since the 
problem is linear, we can wite the solution g as g = gtB) + ag(b.e.), where the 
"bulk part" gtBi solves (3.14)-(3.16) with/~g = 0 and g(b.c.) solves the same 
problem, but with K.h  = 0 and the corresponding fig = pl/2(T/2rO 1/4, which 
means g(b'r V)= )l~t+ (V)m for Vy < 0. The solutions to a suitable integral 
version of these two problems exist by standard compactness arguments 
(see, for example, ref. 15) and we can use the constant a to satisfy 
(v;.gM ~/2) = 0  at y =  1, or, equivalently, flg=Sv;.>odvv.vM~/2g(1, v). To 
do this one has to check that 

(v,, g(bc)(1, V) Mm(1, v))  :/:0 (3.31) 

The proof of (3.31), which requires most of the considerations necessary to 
estimate g, and of Proposition 3.1 below are given in the Appendix. 

We summarize the estimates on g in the following proposition: 

P r o p o s i t i o n  3.1. There exist positive constants Co, qo, and C~ > 0  
such that, for e < eo and q < qo the solutions to Eqs. (3.14)-(3.16) satisfy the 
bounds 

Ilgll ~ ~-'C~. Ilhll (3.32) 

I[~11 ~ ~-2C~, Ilhll (3.33) 

IIg211 ~< Ce Ilhll (3.34) 

In order to find a solution to the "high-velocity" problem (3.17)-(3.19), 
for y, the velocity cutoff, large enough one can use a simple contraction 
fixed-point argument. We will only prove the estimate we need for h to get 
the bound for the solution of (3.11). 

Equation (3.17) differs from Eq. (5.4) of ref. 10 because of the presence 
of the term N~. 2) ~ and zlA~. More relevant is the difference between the 
boundary condition (3.18) and Eq. (5.11) of ref. 10, which requires a more 
careful analysis. In fact/~h depends on the value of h at the point y = 1 and 
cannot be controlled immediately in terms of Ilhll, which depends on the 
integral on the variable y. To manage this part we have to use the integral 
representation already used in ref. 10 to get pointwise estimates. Our result 
on h are summarized in the following proposition, whose proof is in the 
Appendix. 

P r o p o s i t i o n  3.2. Under the conditions of Proposition 3.1, if y is 
large enough, there is c > 0 s.t. 

Ilhll ~<ce 3 lid(1 + Ivl)-111 +c~I/2{Ih_l + Ih+l} (3.35) 
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This bound, together with Proposition 3.1, implies 

IIg, ll<<.eZcll(l+lvl)-~dll+ce-l/2{Ih_l+lh+l} (3.36) 

II~,ll<~ecll(l+lvl)-ldll+ce-a/2{lh_l+lh+[} (3.37) 

IIg211+llhll<~e3cll(l+lvl)-'dlI+cel/Z{Ih I+lh+l} (3.38) 

Once one has the L2 estimates for h and g, pointwise estimates can be 
obtained as in Section 6 of ref. 10, using again the estimate (A.25) for flh 
and a similar one for fig. This provides finally the estimates for the solution 
R of the linear problem (3.11) with conditions (3.5)-(3.7): 

IRI r.0 ~< cell2 IDIr_ 1.0 + ce-21-1(- It,0 + I~ + Ir, 0"] (3.39) 

3.2. The Non l inear  Prob l em 

The estimate (3.39) is all we need to deal with the nonlinear problem 
(3.4)-(3.7). We replace the boundary value problem (3.4)-(3.7) with 

ORk OoR~I Vy--~-y +eF . =-.~Rk+YRk+eZO_(Rk_l,Rk_l)+~3Ae (3.40) 

Rk(--1, v ) = ( - ,  vy>0 (3.41) 

Rk(1, V)=fRK)gI+(v)+~ +, Vy<O (3.42) 

(VyRk>=O for y e [ - - 1 , 1 ]  (3.43) 

for k >1 1 and Ro = 0. Choose D = Q_.(Rk_ 1, Rk_ ~ ) + eA. The inequality 

[M-~/2Q(f, g)l ~- , <~ c IM-1/2fl,. IM-1/2g{,. (3.44) 

for any f and g and the estimate (3.39) imply ~17) 

IRklr.O ~ Ce 3/2 [AI ~,0 + O(e-l/,) (3.45) 

uniformly in k for e small enough. The convergence of the sequence is 
obtained by considering, for k >/1, Wk = Rk--R~,_ 1" The corresponding 
boundary value problem for k/> 2 is 

OWk eFOWk 1 = -  ~Wu +.A/'Wk'k-ezQ_.(Rk_! q- Rk_2, Wk_l)'k-e3A Vy W + Or.,: e 
(3.46) 

Wk(--1, V)=~- Vy>O (3.47) 

W(1, v)=flwkM+(v)+~ +, Vy<O (3.48) 

(v:, Wk> = 0  for y e [ - - 1 ,  1] (3.49) 
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Putting D = O_.(Rk-~ + Rk-2, W~_ l) and using again (3.44) and (3.39), it 
follows that 

IWklr, o~Ce 2 IWk-llr, o (3.50) 

and this implies the convergence if e is small enough. To prove the unique- 
ness, let R, and R2 be two solutions of (3.4)-(3.7) and W = R ~ - R 2 .  As 
above, we get 

[ Wlr. O ~ c~,1/2-~ I WIr.o (3.51) 

Therefore, if ( < 1/2 we have uniqueness for e small enough. This concludes 
the proof of Theorem 2.2. 

4. C O M M E N T S  

A few comments are in order, to conclude our discussion. 

4.1. Boundary Conditions 

The assumption of Maxwell boundary conditions has been used in this 
paper as well as in ref. 10 to simplify the proof, but we expect that with 
extra technical effort one can generalize our result to a wider class of 
boundary conditions, including those described in ref. 5. The fundamental 
assumption on the b.c. we need is that there is a unique distribution 
invariant w.r.t, them and it is a Maxwellian. In this way the nonslip b.c. for 
the hydrodynamic fields are guaranteed in the limit e going to 0. For e fixed 
there are slip corrections of oder e. The crucial point of our work is that 
the corresponding boundary layer corrections are of oder e, too. Boundary 
layer corrections of order 1 would arise with more general slip boundary 
conditions. They would be out of control because the linear theory is not 
sufficient to deal with them and the nonlinear theory is not available, to 
our knowledge. 

4.2. T ime-Dependent  Solutions 

The stationary solutions to the rescaled Boltzmann equation are 
supposedly the limit, as t goes to infinity, of the time-dependent solutions. 
Unfortunately, beyond the case of global equilibrium, t~8,19) nothing is known 
about converge6ce to stationary solutions. Actually, even the existence of 
solutions globally in time is far from obvious. Since we want to deal with the 
hydrodynamic limit, we have to consider also the limit as e goes to zero and 
the order in which they have to be taken is a delicate question. In fact, 
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if we scale space and time according to the Euler scaling and take the l i m ~  o 
before the lim . . . .  the latter one will not exist in general, because the 
hydrodynamic limit, on this scale, destroys the dissipative effects which drive 
the fluid to a stationary state. On the other hand, if we scale space and time 
according to the Navier-Stokes limit (x ~ e-~x, t ~ e-20,  the limits are likely 
to be interchangeble. Therefore the right scaling to discuss the asymptotic 
behavior of the Boltzmann equation in the hydrodynamic limit is the Navier- 
Stokes one. On this scale the time-dependent analog of Eq. (2,2) is 

Of 1 1 1 
~-~+ e V x f + ~  G . V v f =  ~ a ( f , f )  (4.1) 

The first problem one should be able to solve is to get solutions of (4.1) 
with initial data near local equilibrium, bounded uniformly in e at least for 
fixed times. This can be achieved at present only in spcial situations in 
which some kind of scaling invariance is recovered. 

The most interesting case in which the above problem can be solved 
is the incompressible limit discussed in ref. 20. In that paper one scales G 
as e 3 and the velocity field at time zero as e, to guarantee that the velocity 
field at time t is still of order e, restoring a scale invariant situation. In 
ref. 20 only periodic boundary conditions are considered, but a combina- 
tion of the method presented there and the ideas of this paper should allow 
us to extend the result to a slab with thermal walls, in the presence of an 
external force parallel to the walls. The analysis of the stationary behavior 
follows from the method employed to prove the results of this paper: the 
velocity field is of order e with a quadratic profile. We note that in this case 
one expects the solution of the Boltzmann equation for fixed e to converge 
to the global equilibrium as t ~ 0% but the interesting part of the solution, 
the correction of order e, is not under control. 

The compressible case corresponds to assuming that G =  O(e 2) and 
nonconservative (as we do in this paper). Much less is known about te 
time-dependent solutions in this case or even in simpler situations. (zl) The 
fact that the stationary solution we obtain is ruled by the stationary 
Navier-Stokes equation is an indication that the Navier-Stokes scaling is 
the right one to discuss the long-time behavior in the hydrodnamic limit. 

A P P E N D I X  

Proof of Proposition 3. 1. The proof follows along the same lines as 
in ref. 10, so we point out only the differences. We are going to use the 
following property of L: 
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for a suitable positive cl. Note  that  in the r.h.s, of (A.1) there is the 
nonhydrodynamic  part  o f f  denoted by f.  To  take advantage of (A.1), we 
multiply (3.14) by g and integrate on y and v. As in ref. 10, we get 

~ J  + c, 11~ll2 < c~ IIhll- Ilgll + ecq I[~ll" 11211 + ~2cq II~ll 2 (A.2) 

where 

J =  �89 v ) ~ - -  (Vyg2( - 1, v ) ) ]  (A.3) 

and we have estimated the term containing A~ as follows: 

I I dy ~Rj dv gA~. =lldyIR dv ~A~ ~<,,~,].,[(l+,vl)-ZA~l, 
<~ cq I1211 �9 II ~11 (A.4) 

The first equality is due to the fact that (~k, Q(f ,  g ) ) =  0 for ct = 0,..., 4 and 
any f and g. For  the last step we use (22) 

IRd v I Q(x//-Mf' x//--M g) 12 
(1 + I v l ) M  

<~IR dv(l+IvI)lfl2y~3dv(l+lvl)lgl2 (A.5) 

and the bound (2.31), which assures that lib'-II ~ cq. We also note that  the 
cancellation (/~o~ 2) = 0, crucial in ref. 10, is still true. Namely,  it relies on 
the fact that  ~ is even in Vy (because the par t  g2 is taken away),  while p is 
odd. This only depends on the fact that there is no hydrodynamic  flow in 
the direction y, i.e., U(y) has no y component .  Thanks  to this we have 
quadrat ic  terms in g in (A.2) only of order e2; such a term with a lower 
power  of e would be uncontrollable with our method.  

Another  impor tant  step in ref. 10 was the fact that  J was a sum of two 
positive terms due to the _ 1 boundaries. This was a consequence of the 
fact that the outgoing flow was zero by symmetry  on both walls. In the 
present case the outgoing flow is still zero on the lower plate y = - 1 ,  while, 
due to the presence of fig :~ 0, a p roof  is required of the positivity of the 
contr ibution coming from y = 1. We have 

(Vyg-(l,v))= dvvyg-(l,v)-fl &;lv:,ldffl+(v) M-'(1, v) 
.v>O .., <0 

(A.6) 
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By the Schwartz inequality, 

fl~= dv [v,,M(1, v)]'/2[v~/2g(1, v)] 
,),>0 

<~ [ dv v.v g2(1, v) [ dv v~,M(1, v) (A.7) 
" v y>0 %y>0 

and using the relation between M(1, v) and/~r+ and the normalization of 
/14+, we get <Vyg2(1, v)>>~0. 

In particular, this means that - ( v y g 2 ( - 1 ,  v)), which is positive, is 
estimated by the r.h.s, of (A.2). Now we are in the same position as in 
ref. 10 and, from this point on, the estimate of g follows the same lines, so 
we do not repeat it 

Proof of (3.31). It can be shown directly, but a simpler proof 
is obtained by reduction to absurdity. In fact, suppose the contrary. 
Then, since the term K.h is put equal to zero, it follows that 
(vyg(b'c)(y, v)Ml/2(1, v ) ) = 0  for all y e  [ - 1 ,  1]. Therefore, 

Iv dv v.v g(b'c)(1, V)= 1 = fo dv [v.v I g(b.c.)(_ 1, V) 
y>O ,<0 

because ~ .... odv Iv,,I gtbc~(--1, V)=0 and, by definition, ~v,<odV Iv,,I x 
g(br V)= 1. Muitiplying (3.14), written for gtb.~.l, by g(b.g.~ and inte- 
grating over y and v, for q and e small, we get, with the same argument 
used to estimate g, that there is a positive c such that 

I, dvvy(g(b'c'~)2(l'v)--l+f, dVlVyl(g(b=))2(--1, v)+clJg(bc'~[[2~O 
I).>O 1),<0 

(A.8) 

since S~.<o dv Ivy[ (g(bc'~)2(1, v) = 1. We have also Sv~.>o dv vy(g(b'~'))2(1, V) 
= 1. In fact, it is not bigger than 1, by (A.8). On the other hand, by the 
Schwartz inequality, as before, 

\ 1/2 

Hence, by (A.8), ~v,.<odylvyl(gtb=l)2(--1, v)=O, SO g(b'=')(--1, V)=0 
for all v. From (A.8) it also follows that [[g~b.c.)[[ =0. Similarly one easily 
gets the vanishing of the hydrodynamic part and finally g(b.~.)=0. This 
contradicts the condition gtb'~'~(1, V)= M+(V) for Vy<0 and concludes the 
argument. 



Stationary Navier-Stokes Equations 409 

Proof of Proposition 3.2. The arguments of ref. l0 provide the 
bound 

[l(1 + Ivl) -1 N~,z)~,[I <~cq 11~[/ (A.10) 

The estimate of AAg is slightly more involved. From (A.5), with M =  M , ,  
we get 

I1(1 + Iol)- '  Aagll ~ II~ll" [IM~mT~ d'M+ll (A.11) 

The bounds on the hydrodynamic fields allow us to estimate M ,  u2 A'M+. 
In fact we have 

M ,  -~/2 IdM + (y', v)l 

- 101~ v~T-I 

<~ cqy" exp( - 2v z) 

Ou T-Z ~ Y"] OY 2 -  (~2_ 3T) exp(--2v 2) 
y = y * 

(A.12) 

with a suitable y*~  [ - 1 ,  y]  and 6 the vector (vx-u,  vy, v_.) and 
2 =  (4p) - ~ -  (4T.)  -l .  Remember that y " = e - l ( 1 - y ) ,  p is the sup of the 
temperatures, and T.  >p. The estimates (2.31) and above imply that 

I1(1 + Ivl) -~ dA~,ll <~cq II~l/ 

Now we come to the bound for flh We recall the notation used in 
ref. 10: consider the equation 

Of eF Of + _ lvf = _ l Z 
v ;, -~y + Ov ,. 

with the boundary conditions 

f ( - 1 ,  v ) = f _ ,  Vy>0; 

Define 

(A.13) 

f (1 ,  v ) = f + ,  vy<O (A.14) 

;y ( ) qS.,, r = . ,  dz v z, vx + y), v,,, v~ 
. 1 ) y  " 

(A.15) 

U'Z(Y '~  1-~-f v _ , d Y ' Z ( Y " V " + ~ ( Y ' - Y " O " ' G )  exp(  evy / y" 

(A.16) 

8 2 2 / 7 8 / t - 2 - 2 8  
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for v:, > 0 and 

U ~ Z ( y , v ) = - - d y ' G  y ' , v x + e F ( y ' - y ) , v , , , v :  exp (A.17) 
y v.,, " \ sv, / 

for v;. < 0. Moreover,  put 

+ Vy, "- (A.18) 
V.v 8~, 

+ + = , v,,, v~ exp (A.19) 
�9 Vy " \ ~Vy ) 

The solution of Eqs. (A.13) bd (A.14) can be written as 

f =  V~+ f + + V ~ f -  + U~Z (A.20) 

We now write Eq. (3.17) for h as (A.13) with 

Z = - eFp.h + (p + ~Fp') g(g + g2) + ~ - I ~ . K .  h 

- N . [ a ( # + g 2 ) + h ]  +z[N~.2~g+AA~,] +E2d (A.21) 

and the boundary  conditions (3.18), (3.19). 
Equat ion (A.20) allows us to express /~h in terms of U~Z and the 

restriction of h ( -  1, v) to v,, > 0. We have the estimate 

fv.>o v"Ml*/2 h( l' v) 

vy..~, h_ o x+ - -  . vv, v z 
.v > 0 O y  " 

oxp( } x + U~Z(1, v) 
~V.,, J 

I, " ~ ' n U ~ Z  ~<lh_ l+  -.,...-, (A.22) 

with 

h• = ~ •  1/2 and [h+[ = sup ]h• 
v~xo 

By (A.20) and (A.17), using the Schwartz inequality and 

i I  d y ( ~ v . , , ) - l v e x p [ - ( ~ v y ) - l ~ w , , ] < l ,  v y > 0  (A.23) 
- 1  
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we get 

I;v v"M~*/2U'Z <~e-l/2cfo Iv.,.]'/2M.'/2(f 1_ dyv-lZ2) '/2 (A.24) 
y>0 y>0 1 

Finally, using again the Schwartz inequality and recalling the expression of 
fit,, we get 

/lh<~c(e -~n IIv-lZll + Ih_l + Ih+/) (A.25) 

Define J = (v.,,h2(l, v))- (v.,,h2( - 1, v)). Using the boundary conditions 
for h, we have 

f~ 'v.~'lh2(-1, v)+f~ ,v,,lh2(1, v)l<~--+c(t~t2,+lh+12+]h_] 2) 
y<O ~.>0 

(A.26) 

By the bound (A.25) on flh we conclude that 

~ >  - c ( ~ - '  IIv-tZll + Ih_12 + Ih+l 2) (A.27) 

Using the last bound and following the same procedure as in ref. 10, we can 
get Proposition 3.2. 
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